Геометрия, вопрос задал enimapod , 7 лет назад

Дан треугольник со сторонами 26 см, 28 см и 30 см. Точка М удалена от всех сторон треугольника на 17 см и проектируется во внутреннюю точку треугольника. Найдите расстояние от точки М до плоскости треугольника.

Помогите решить. Желательно, с чертежом.

Ответы на вопрос

Ответил dnepr1
0

Если точка М удалена от всех сторон треугольника на равные расстояния, то она проектируется во внутреннюю точку треугольника - центр O вписанной окружности.

Радиус вписанной окружности находим из площади ( по Герону).

S = √(p(p-a)(p-b)(p-c))= √(42*16*14*12) = 336 см².

Тогда r = S/p = 336/42 = 8 см.

Отсюда находим искомое расстояние Н от точки М до плоскости треугольника.

Н = √(17² - r²) = √(289 - 64) = √225 = 15 см.

Приложения:
Новые вопросы