70 и 71..................................8 класс
Приложения:
Ответы на вопрос
Ответил Artem112
0
70.
Рассмотрим прямоугольные треугольники АВН и СВН. Они равны по двум катетам (ВН - общий, АН=СН по условию). В равных треугольниках против равных сторон лежат равные углы и против равных углов лежат равные стороны. Тогда:
Против равных сторон АН и СН лежат равные углы АВН и СВН, в сумме дающие прямой угол. Тогда, каждый из них равен по 45 градусов. Значит, и углы НАВ и НСВ равны по 45 градусов, так как сумма острых углов прямоугольного треугольника равна 90 градусов (пункт в). Получается, что в прямоугольном треугольнике АВН острые углы равны, значит он равнобедренный и АН=ВН (пункт а). Против равных углов НВА и НВС лежат равные стороны АН и СН, в сумме дающие АС. Уже доказано, что АН=ВН, значит и СН=ВН. Тогда, заменив в равенстве АН+СН=АС стороны АН и СН на ВН, получим: ВН+ВН=АС или 2ВН=АС (пункт б).
71.
Рассмотрим подобные прямоугольные треугольники АВС и НВС. Отношение сходственных сторон:
Из последних двух отношений получим:
Аналогично, для стороны АС выражение примет вид:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между этим катетом и высотой, проведенной из вершины прямого угла.
Подставляем значения:
а)
б)
в)
г)
Рассмотрим прямоугольные треугольники АВН и СВН. Они равны по двум катетам (ВН - общий, АН=СН по условию). В равных треугольниках против равных сторон лежат равные углы и против равных углов лежат равные стороны. Тогда:
Против равных сторон АН и СН лежат равные углы АВН и СВН, в сумме дающие прямой угол. Тогда, каждый из них равен по 45 градусов. Значит, и углы НАВ и НСВ равны по 45 градусов, так как сумма острых углов прямоугольного треугольника равна 90 градусов (пункт в). Получается, что в прямоугольном треугольнике АВН острые углы равны, значит он равнобедренный и АН=ВН (пункт а). Против равных углов НВА и НВС лежат равные стороны АН и СН, в сумме дающие АС. Уже доказано, что АН=ВН, значит и СН=ВН. Тогда, заменив в равенстве АН+СН=АС стороны АН и СН на ВН, получим: ВН+ВН=АС или 2ВН=АС (пункт б).
71.
Рассмотрим подобные прямоугольные треугольники АВС и НВС. Отношение сходственных сторон:
Из последних двух отношений получим:
Аналогично, для стороны АС выражение примет вид:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между этим катетом и высотой, проведенной из вершины прямого угла.
Подставляем значения:
а)
б)
в)
г)
Ответил lara164
0
***************************************
Приложения:
Новые вопросы
Математика,
2 года назад
Математика,
2 года назад
Алгебра,
9 лет назад
Математика,
9 лет назад
Математика,
9 лет назад