1) решить уравнение
4(sin4x - sin2x) = sinx(4cos²3x+3)
2)укажите корни этого уравнения принадлежащие отрезку [0; 3п/2]
Ответы на вопрос
Ответил Удачник66
4
4(sin 4x - sin 2x) = sin x*(4cos^2 (3x) + 3)
По формуле разности синусов
Подставляем
8sin x*cos(3x) = sin x*(4cos^2 (3x) + 3)
1) sin x = 0; x = pi*k; в промежуток попадают корни x1 = 0; x2 = pi
2) 4cos^2 (3x) - 8cos (3x) + 3 = 0
Квадратное уравнение относительно cos 3x
D/4 = 4^2 - 4*3 = 16 - 12 = 4 = 2^2
cos (3x)1 = (4 - 2)/4 = 1/2
x = +-1/3*(Π/3 + 2pi*n) = +-Π/9 + 2Π/3*n
В промежуток попадают корни
x3 = Π/9; x4 = 7Π/9; x5 = 11Π/9; x6 = 13Π/9
cos (3x)2 = (4 + 2)/4 = 6/4 > 1
Решений нет.
Ответ: а) x1 = pi*k; x2 = +-Π/9 + 2Π/3*n
б) 0; Π; Π/9; 7Π/9; 11Π/9; 13Π/9
По формуле разности синусов
Подставляем
8sin x*cos(3x) = sin x*(4cos^2 (3x) + 3)
1) sin x = 0; x = pi*k; в промежуток попадают корни x1 = 0; x2 = pi
2) 4cos^2 (3x) - 8cos (3x) + 3 = 0
Квадратное уравнение относительно cos 3x
D/4 = 4^2 - 4*3 = 16 - 12 = 4 = 2^2
cos (3x)1 = (4 - 2)/4 = 1/2
x = +-1/3*(Π/3 + 2pi*n) = +-Π/9 + 2Π/3*n
В промежуток попадают корни
x3 = Π/9; x4 = 7Π/9; x5 = 11Π/9; x6 = 13Π/9
cos (3x)2 = (4 + 2)/4 = 6/4 > 1
Решений нет.
Ответ: а) x1 = pi*k; x2 = +-Π/9 + 2Π/3*n
б) 0; Π; Π/9; 7Π/9; 11Π/9; 13Π/9
Удачник66:
Ой, а ведь я неправильно решил квадратное уравнение! 4cos^2(3x)-8cos(3x)+3=0
Новые вопросы
Окружающий мир,
1 год назад
География,
1 год назад
Английский язык,
1 год назад
Алгебра,
6 лет назад